Riemannian Newton Method for the Multivariate Eigenvalue Problem

نویسنده

  • Lei-Hong Zhang
چکیده

The multivariate eigenvalue problem (MEP) which originally arises from the canonical correlation analysis is an important generalization of the classical eigenvalue problem. Recently, the MEP also finds applications in many other areas and continues to receive interest. However, the existing algorithms for the MEP are the generalization of the power iteration for the classical eigenvalue problem and converge slowly. In this paper, we propose a Riemannian Newton method for the MEP, which is a generalization of the classical Rayleigh quotient iteration (RQI). Under a mild condition, the local quadratic convergence can be guaranteed. We also develop the inexact implementation by employing some Krylov subspace method and establishing the preconditioning technique to obtain an inexact Riemannian Newton step efficiently. Preliminary but promising numerical experiments are reported which show a good convergence performance in terms of the proposed method’s speed and global convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A Riemannian Newton Algorithm for Nonlinear Eigenvalue Problems

We give the formulation of a Riemannian Newton algorithm for solving a class of nonlinear eigenvalue problems by minimizing a total energy function subject to the orthogonality constraint. Under some mild assumptions, we establish the global and quadratic convergence of the proposed method. Moreover, the positive definiteness condition of the Riemannian Hessian of the total energy function at a...

متن کامل

Geometric Optimization Methods for Adaptive Filtering

The techniques and analysis presented in this thesis provide new methods to solve optimization problems posed on Riemannian manifolds. These methods are applied to the subspace tracking problem found in adaptive signal processing and adaptive control. A new point of view is offered for the constrained optimization problem. Some classical optimization techniques on Euclidean space are generalize...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Solving Nonlinear Eigenvalue Problems using an Improved Newton Method

Finding approximations to the eigenvalues of nonlinear eigenvalue problems is a common problem which arises from many complex applications. In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear eigenvalue problems are verified. These algorithms use an efficient numerical approach for calculating the first and second derivatives of the determinant of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010